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Abstract. An approach is proposed to obtain some exact explicit stationary solutions in terms of
elliptic functions to a nonlinear reaction–diffusion equation. The method is based on the reduction
of the hyperelliptic integral to the elliptic one and its inversion via the Weierstrass and Jacobi
elliptic functions. The solutions for both polynomial reaction and diffusion functions include
bounded periodic and localized (in space) functions. Such solutions seem to be the best candidates
to describe periodic nanostructures observed in experiments on formation of thin films by means
of molecular epitaxy (the so-called ‘quantum wires’). Generalization of the approach is discussed
for reaction and diffusion functions distinctive from polynomials. In particular, explicit stationary
solutions are found in terms of elliptic functions for arbitrary diffusion and relevant reaction terms.

1. Introduction

In this paper we propose an approach to find some exact stationary quasi-periodic solutions to
a nonlinear diffusion equation with a reaction termA(u):

u′t = (D(u)u′x)′x +A(u) (1)

where bothD(u) andA(u) are known functions ofu(x, t).
Depending on a particular form of these functions, equation (1) appears in population

genetics, combustion theory, continuum physics, selforganization phenomena, interphase
interactions physics, etc [1–11]. The most common versions of the nonlinear equation
considered are known as the KPP or Fisher equation, occurring in population dynamics and
combustion theory. Some of the simplest exact solutions were found [3] by means of phase
plane analysis. Numerical analysis has been widely used to study the modified Selkov model for
cubic chemical reaction in hyperbolic or parabolic diffusion limit, see e.g. [4], while in [5] the
lattice Boltzmann equation was used to yield a parabolic reaction–diffusion model. However,
complete description of the possible set of exact solutions seems not to have been achieved,
even for an ODE version of a nonlinear problem, having both arbitrary reaction and diffusion
terms. An important problem arises in the derivation of exact solutions (and, in particular, of
exact explicit solutions for the corresponding stationary equation) widely used as test points
in numerical simulations.
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194021, Russia.
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The problem under consideration has also been studied by means of group theory methods.
The complete group of Lie point symmetries for equation (1) with various reaction and diffusion
functions can be found in [8]. Corresponding invariant solutions for blow-up process modelling
in heat conduction are widely used, see [7]. Nonclassical symmetries of (1) were considered
in [6], and the corresponding new invariant solutions were obtained for exponential and power
diffusion terms. The description of particular nonclassical symmetries of (1) with arbitrary
diffusion function was given in [6], which led to some exact periodic invariant solutions.

We are aiming to obtain some new exact periodic and localized solutions by means of a
different approach. Most of the solutions to equation (1) obtained for either exponential or
power law are assumed to be valid for diffusion and reaction functions. Surprisingly, in other
cases symmetry methods almost always provide only trivial group solutions. The connection
between symmetry methods andad hocmethods of derivation of exact solutions is still not
clear, which makes the latter methods important for the understanding of the different effects
governed by (1). On the other hand, the methods we use are based on the classical results
of the theory of hyperelliptic integrals and their reduction to elliptic ones, which seems to be
useful in many applications.

The paper is organized as follows. Sections 2 and 3 are devoted to description of the
method for obtaining exact solutions to equation (1) with polynomialD(u) andA(u) in terms
of elliptic functions, that is based on reductions of hyperelliptic integrals. In section 4 we
obtain the corresponding bounded periodic and localized solutions. Section 5 is devoted to the
numerical analysis of physical parameters providing the bounded solutions. Generalization of
the approach for bothA(u) andD(u) distinctive from polynomials is given in section 6.

Equation (1), containing bothpolynomialreaction and diffusion terms, seems to be the
most important for physical applications. Here, we briefly discuss its derivation in the relatively
new mathematical model [12,13] of description of the adsorbate growth kinetics on a surface by
means of molecular beam epitaxy, which is widely used in microelectronics. Such processes
are usually described in terms of phenomenological approaches to the thermodynamics of
irreversible processes, lattice gas models and their modifications (see, e.g. [12–14]). Within the
framework of phenomenology the question arises of how to determine a connection between
the growth kinetics and the description of adsorption, desorption and diffusion elementary
processes. On the other hand, the use of lattice gas models does not necessarily lead to
appropriate formulation of a single kinetic equation, in which all elementary processes are
taken into account, and which is useful for description of adsorbate growth at all stages. A
starting point for finding a relationship between phenomenological and microscopic theories
of adsorbate metastability seems to be given by the so-called generalized kinetic Brunauer–
Emmet–Teller (BET) model for multilayer adsorbate growth from a one-component gas under
isothermal conditions [12–14]. This model is intermediate between the master equation
method [15] and the BET model [16], and deals with the microscopic approach based on time-
dependent lattice gas models. An advantage of this model is that it makes it possible to consider
the adsorbate growth kinetics taking into account the influence of different microscopic
processes, adsorption regimes, inhomogeneities in the substrate and molecular beam, without
using phenomenological parameters and additional assumptions on a growth mechanism. The
adequacy of this model was confirmed both by its correct limit transitions to the classical
results of the adsorption theory and the experimental results [17,18].

In the case of the monolayer growth dynamics under natural constraints for the BET
model, the continuum one-dimensional limit of the master equation for the probabilityθ(Er, t)
of finding a particle in a surface pointEr = (x, y) at timet takes the form

∂θ(Er, t)
∂t

= ∇Er (D(θ)∇Erθ) +A(θ) (2)
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A(θ) = b(1− θ)− θ exp(−φAθ) D(θ) = [1− φDθ(1− θ)] exp(−φDθ) (3)

whereb, φA andφD are given physical parameters of the model.
It is easy to see that in order to obtain a solution to (2) which does not depend on space

and time variables, one has to solve the following transcendental equation:

A(θ) = b(1− θ)− θe−φAθ = 0. (4)

For values ofb belonging to the open intervalbmin < b < bmax (wherebmin = (θA2 /θ
A
1 ) ×

exp(−φAθA2 ); bmax= (θA1 /θA2 ) exp(−φAθA1 ); andθA1,2 = (1∓ 1
2

√
1− 4/φA)) there are at most

three solutions (θ1 6 θ2 6 θ3) to (4). A rootθ2 is thermodynamically unstable and, in the
case of various roots of (4), it describes the coexistence of a gas phase with chemical potential
proportional to logb and two adsorbate phases with constant coverage levelsθ1 (dilute phase)
andθ3 (dense phase), see [13]. Hence, it is of interest for physics to study equation (2) for
thoseθ that are in a small vicinity of roots of equation (4). Introducingθ = θ0 + u, where
θ0 is a root of (4), and writing exponential terms in (3) as power series with respect tou and
omitting higher-order terms, one can obtain the one-dimensional stationary version of (2) in
the form

(Ps(u)u
′)′ +Qn(u) = 0 (5)

where

Ps(u) = 1 +p1u + p2u
2 + · · · + psus

Qn(u) = u(q0 + q1u + · · · + qn−1u
n−1)

(6)

and coefficientspi ,qi are given functions of physical parameters. These functions are evidently
not zero, which makes the problem of derivation of exact solutions to (5) with arbitrary
polynomialsPs andQn very important.

Equation (5) also arises in many other applications. For example, it represents the
stationary version of the generalized Fisher equation used in population genetics. For this
reason we first consider (5) for arbitrary values ofu. After the solutions to (5) are obtained,
they are analysed (in sections 4 and 5) for 0< u < 1.

2. Analysis of the stationary equation

The stationary version of equation (1) in the form

(D(u)u′)′ +A(u) = 0 (7)

for arbitrary functionsA(u) andD(u) can be reduced by means of the transformation [26]

v(u) = (u′)2
to the following linear equation:

v′ + f (u)v = g(u)
where

f (u) = (logD2(u))′u g(u) = −2A(u)/D(u).

Solving it, we obtain the following implicit solution to equation (7):

x = c2 +
∫

D(u)√
c1− 2

∫
A(u)D(u) du

du (8)

wherec1 andc2 are arbitrary integration constants.
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The problem of derivation of exact explicit solutions to equation (7) with arbitrary
functionsA(u) andD(u) is reduced, thereby, to the inversion of the integral in (8).

Now assume that both diffusion and adsorption functions are polynomials,D(u) = Ps(u),
A(u) = Qn(u), of the form (6) with coefficientspi, qj to be specified by a problem under
consideration. Letp0 = 1 andQn(0) = 0 be assumed for simplicity: this is quite typical
for various physical problems; however, an analysis can be done in a similar way for arbitrary
polynomialsPs(u),Qn(u) of orderss andn, respectively.

Due to the assumption, (8) leads to the following solution to equation (7):

x = c2 +
∫

Ps(u)√
c1− 2

∫
Qn(u)Ps(u) du

du ≡ c2 +
∫

Ps(u)√
Rs+n+1(u)

du. (9)

The integral in (9) is the Abelian one. The inversion problem for Abelian integrals of the first
kind, i.e. the Jacobi inversion problem [19], is solved in terms of Abelian functions, which are
the single-valued, analytic,k-dimensional, and 2k-periodic functions. Explicit formulae for
the solutions can be obtained in terms of multi-dimensional Riemannθ -functions. In particular,
for k = 1, elliptic functions will constitute the appropriate limits. The corresponding Jacobi
inversion problem coincides with the inversion problem for the elliptic integral of the first kind,
and relevant explicit formulae for solutions represent the well known relationship between the
Jacobi and Weierstrass elliptic functions and the Jacobiθ -functions, [27].

An elliptic integral of the first kind appears in (9) ifs = 0 andn = 2, 3. Calculating
its inverse, a solution to equation (7) in terms of elliptic functions can be obtained, when a
constant diffusion and a polynomial adsorption of fourth order are given. The solution depends
on two arbitrary constantsc1 andc2.

For s > 0 andn > 2 the hyperelliptic integral in (9) cannot have a single-valued inverse
function in the general case. However, in some particular cases a hyperelliptic integral of
the first kind is reduced to an elliptic integral of the first kind, which is invertible in terms of
elliptic functions introduced by Jacobi and Weierstrass. For such reduction to be valid one
has to impose corresponding constraints for numberss, n and for coefficients of polynomials
Ps(u) andQn(u).

2.1. Simplest reduction

Factorization of the polynomialRs+n+1(u) seems to be the simplest case of the reduction of
(9). Namely, it results in an elliptic integral of the first kind, if the following relationship is
valid:

Rs+n+1(u) = [Ps(u)]
2R̃3;4(u) (10)

whereR̃3;4(u) is a polynomial of third or fourth order. It is easy to see from (10) that the
factorization is possible only ifn− s − 2= 0 orn− s − 3= 0.

Let us assumen = s + 3 with arbitrarys (which corresponds to the polynomialR̃4(u)

in (10)). Collecting coefficients with the same power ofu in the left-hand side of (10) and
making them equal to the corresponding terms in the right-hand side, one can reduce (10) to
a linear system of algebraic equations, in which the coefficients ofR̃4(u) are variables. If
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b2s ≡ p2
s 6= 0, then the basis minor� of the resulting system has the form

� =


b2s b2s−1 b2s−2 b2s−3 b2s−4

0 b2s b2s−1 b2s−2 b2s−3

0 0 b2s b2s−1 b2s−2

0 0 0 b2s b2s−1

0 0 0 0 b2s


bk =

s∑
i,j=0

δki+jpipj k = 0, . . . ,2s and bk = 0 k < 0

(11)

wherepi are from (6) andδki is the Kronecker’s symbol. Let us also denote

3i =


r2s

�
...

r2s+4

bi . . . bi−4 ri

 i = 0, . . . ,2s − 1

r0 = c1 rk = −2

k

(s,n)∑
(i,j)=(0,1)

δk−1
i+j piqj−1 k = 1, . . . , s + n + 1

(12)

whereqj are from (6). Note thatr1 = 0; however, it does not provide any simplification of
the solution below. Using standard linear algebra, one can conclude that, if and only if the
following condition is valid:

det3i = 0 i = 0, . . . ,2s − 1 (13)

then the famous Cramer formulae yield the following unique solution(ξ0, . . . , ξ4) (i.e. the
coefficients of the polynomial̃R4(u)) to the algebraic system under consideration:

ξi = 1

b5
2s

5∑
j=1

r2s+j−1�j,i+1 i = 0, . . . ,4 (14)

where�j,i+1 is the minor of the matrix element(�)j,i+1. Thus, we are ready to formulate the
following proposition.

Proposition 1. If for arbitrary s, n = s + 3 andps 6= 0 the conditions (13) on the coefficients
of equation (5) are valid, then this equation has the following solution:

u(x) = α − 2a1

2℘(x + c2; g2, g3)− a2
(15)

whereα is a root of the polynomial̃R4(u) ≡ ξ0 + ξ1u+ · · ·+ ξ4u
4, ξi are given in (14), and the

constants

a1 = 1
4P
′(α) a2 = 1

12P
′′(α) a3 = 1

24P
′′′(α) a4 = 1

24P
(4)(α)

define the invariants

g2 = 3a2
2 − 4a1a3 g3 = 2a1a2a3− a3

2 − a2
1a4.

Proof. If (13) holds, then the factorization (10) takes place withR̃4(u)as written above. Hence,
the integral in (9) is elliptic of the first kind, and formula (15) is the result of its inversion. That
completes the proof. �

Repeating the scheme described above with obvious changes in the casen = s + 2 (i.e.
for the cubicR̃3(u) in (10)), one obtains the following result.
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Proposition 2. If for any arbitrary s, n = s + 2 andps 6= 0 in Ps(u) the following conditions
on the coefficients of the equation (5) are valid:

det3̃i = 0 i = 0, . . . ,2s − 1 (16)

then equation (5) has the following solution:

u(x) = 4

ζ3

(
℘(x + c2; g2, g3)− ζ2

12

)
(17)

where

ζi = 1

b4
2s

4∑
j=1

r2s+j−1�̃j,i+1 i = 0, . . . ,3

g2 = 1
12(ζ

2
2 − 3ζ1ζ3) g3 = 1

432(9ζ1ζ2ζ3− 27ζ0ζ
2
3 − 2ζ 3

2 ).

Here matrices�̃ and3̃i are formed from matrices� and3i by omitting the fifth column and
the fifth row, respectively.

2.2. Reductions in the case of linear diffusion and cubic or quartic adsorption

Factorization of the form (10) is not the only way resulting in successful inversion of the integral
in (9). Methods of Riemann surfaces geometry allow to obtain some other exact solutions.

The most developed case of the hyperelliptic integral reduction occurs wheng = 2,
whereg is genus of the Riemann surface corresponding to the integral in (9), that is, the case
s = 1 andn = 3 or 4. The problem of such reduction attracted much attention [24, 25] in
the theory of nonlinear equations integrable by the inverse scattering transform method due
to a possibility to reduce the problem of periodic solutions of such equations to the Jacobi
inversion problem [20]. Necessary and sufficient conditions are known [24] for the reduction
of an arbitrary hyperelliptic integral of the first kind to the elliptic one formulated in terms
of the 2× 2 matrix{Bij } of the hyperelliptic integral periods on the corresponding Riemann
surface:

k1 + k2B11 + k3B12 + k4B22 + k5(B11B22− B2
12) = 0 (18)

for some integerki . The problem of formulating criterion (18) in terms of the polynomial
coefficients in a hyperelliptic integral (i.e. explicitly in terms of the coefficients of the initial
differential equation) is far from being solved. However, besides the reduction by means of
factorization ofRs+n+1(u) in the cases = 1, n = 3, 4 one can use the reduction examples,
which were found in the caseg = 2 by Jacobi, Hermite, Burnside and Bolza.

The Jacobi formula [21,24] describes all possible reductions forki satisfying the following
relation:

k2
3 + 4(k1k5− k2k4) = 4

and has the form∫
(1 + cy) dy√

y(y − 1)(y − a)(y − b)(y − ab) =
1

2

[(
1√
ab

+ c

)
J+ −

(
1√
ab
− c

)
J−

]
where

J± =
∫

dz√
z(1− z)(1− (c±)2z)

z = (1− a)(1− b)y
(y − a)(y − b) (c±)2 = − (

√
a ∓√b)2

(1− a)(1− b) .
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The Burnside reduction [22,24] is given by the formulae∫
(1 + 2c)(y + 1/2)− c(2 + c)

w
dy =

∫
1√

ξ(ξ − 1)(ξ − y0)
dξ (19a)∫

(y + c + 1
2)

w
dy =

∫
1√

(ζ − ζ1)(ζ − ζ2)(ζ − ζ3)
dζ (19b)

w2 = (y2 − 1
4){(y + 1

2)(y + c2 + 2c + 1
2)

2 − y0[(1 + 2c)(y + 1
2) + c2]2} (19c)

ξ = (y + 1/2)(y + 1/2 + 2c + c2)2

[(1 + 2c)(y + 1/2) + c2]2
(19d)

ζ = (y + 1/2)3 + c2(y + 1/2) + 2c − ξ0[(y + 1/2)(1 + 2c) + c2]

y2 − 1/4
(19e)

wherec, y0 andξ0 are arbitrary constants (in particular, forc = − 1
2 formulae (19) represent

the Hermite reduction [24]).
For s = 1, n = 3 the use of these reductions yields the elliptic integrals in the implicit

solution (9). Inverting them, we obtain the following propositions.

Proposition 3 (Jacobi reduction). Let z1, . . . , z5 be roots of the polynomialR5(u) from (9)
(for simplicity they are supposed to be different), and the following conditions be valid:

(z2 − z1)(z5− z1) = (z3− z1)(z4 − z1)

p0 + p1z1 = ±p1

√
(z3− z1)(z4 − z1).

(20)

Then the equation(P1(u)u
′)′ +Q3(u) = 0 has a family of solutions

u(x) = (z2 − z1)X(v±(x)) + z1

v±(x) = 4

c2±
℘

[
(z2 − z1)

√
r5(z5− z1)

p0 + p1z1
(x + c2); g2,±, g3,±

]
+

1 + c2
±

3c2±

(21)

where

c2
± = −

√
z2 − z1

(√
z3− z1∓√z4 − z1

)2
(z2 − z3)(z2 − z4)

g2,± = 1
12[(1 + c2

±)
2 − 2c2

±] g3,± = 1
216(1 + c2

±)[(1 + c2
±)

2 − 3c2
±]

andX(µ), being the function of its unknownµ, is defined as a root of an algebraic equation

µX2 −
(
µ
z3 + z4 − 2z1

z2 − z1
+
(z2 − z3)(z2 − z4)

(z2 − z1)2

)
X +µ

z5− z1

z2 − z1
= 0.

Recall thatr5 is defined in (12); indices ‘+’ and ‘−’ in the above formulae correspond to ‘+’
and ‘−’ signs in (20), respectively.

Proposition 4 (Burnside reduction). (i) Let the coefficientspi, qi be such that the integral
in the implicit solution (9) is reducible to the integral in the left-hand side of (19a), i.e.

P1(y)√
R5(y)

= (1 + 2c)(y + 1/2)− c(2 + c)

w
∀y ∈ R

wherew is from (19c). Then the equation(P1(u)u
′)′ + Q3(u) = 0 has the following

solution in terms of the Weierstrass elliptic function:

u(x) = Y (v(x))
v(x) = 4℘

[√
r5(x + c2); g2, g3

]
+ 1

3(1 +y0)
(22)
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where

g2 = 1
12[(1 +y0)

2 − 2y0] g3 = 1
216(1 +y0)[(1 +y0)

2 − 3y0]

with y0 and c being arbitrary constants, and the functionY (µ) defined as a root of the
cubic equationY 3 +C2(µ)Y

2 +C1(µ)Y +C0(µ) = 0 with the following coefficients:

C0(µ) = 1
8(1− 2µ) + (1− µ)c + ( 5

2 − 2µ)c2 + 2(1− µ)c3 + ( 1
2 − µ)c4

C1(µ) = 3
4 − µ + 4(1− µ)c + 6(1− µ)c2 + 4(1− µ)c3 + c4

C2(µ) = 1
2(1 + 2c)[3− 2µ + (2− 4µ)c].

(ii) Let the coefficientspi, qi be such that the integral in the implicit solution (9) is reducible
to the integral in the left-hand side of (19b), i.e.

P1(y)√
R5(y)

= y + c + 1/2

w
∀y ∈ R.

Then the equation(P1(u)u
′)′ +Q3(u) = 0 has the following solution:

u(x) = Z(v(x))
v(x) = 4℘

[√
r5

p1
(x + c2); g2, g3

]
+

1

3
(ζ1 + ζ2 + ζ3)

(23)

where

g2 = 1
12[ζ 2

1 + ζ 2
2 + ζ 2

3 ] g3 = 1
432[21ζ1ζ2ζ3 + 2(ζ 3

1 + ζ 3
2 + ζ 3

3 )]

and the functionZ(µ) is defined as a root of the equationZ3+B2(µ)Z
2+B1Z+B0(µ) = 0

with the coefficients:

B0(µ) = 1
8[1 + 2µ− 4ξ0 + 8(2− ξ0)c + 4(1− 2ξ0)c

2]

B1 = 3
4 − ξ0(1 + 2c) + c2

B2(µ) = 3
2 − µ.

Numbersζ1, ζ2, ζ3 are defined by the following equations:

ζ1 + ζ2 + ζ3 = 4 +y0 + (4y0 − 2)c + (4y0 − 2)c2

ζ1ζ2 + ζ1ζ3 + ζ2ζ3 = 3y0 + 5ξ0 + 2(7y0 + 5ξ0 − 3)c + 6(3y0 − 2)c2 + 4y0c
3 + c4

ζ1ζ2ζ3 = −4{y0(4ξ0 − 2) + 2ξ0 + 2[9 + 2y0(6ξ0 − 1)− 2ξ0]c + [3y0(16ξ0 + 1)

−31ξ0]c2 + 8[1 + (4y0 − 2)ξ0]c3 + (12− 11y0)c
4 + 2c5}

for arbitrary y0, c andξ0.

We note that all square roots in the last propositions are arithmetic. All expressions in
the roots are supposed to be real and positive for simplicity, such that all the solutions listed
above are real single-valued functions. Due to lack of space we do not study the problem of
derivation of coefficientspi, qi providing such assumptions are valid.

Reductions in the cases = 1,n = 4 (g = 2) can be found in the paper by Bolza [23], see
also [24]. The corresponding formulae for exact solutions seem to be complicated for further
applications.
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3. Periodic solutions to the problem with linear diffusion and cubic adsorption functions

For application to adsorption–diffusion process modelling, it is of interest to consider the case
s = 1, n = 3 in more detail, that is

(1 + ku)u′′ + k(u′)2 + u(a + lu +mu2) = 0 (24)

wherek, a, l,m are constant.
Condition (16) is now written as

c1 = m

5k2

(
1

2k2
+

5a

3m
− 5l

6km

)
which allows us to apply proposition 2 and to obtain the following solution to equation (24):

u(x) = 1

4k
− 5l

12m
− 10k

m
℘(x + c; g2, g3)

g2 = 2klm + 5k2l2 − 3m2 − 16amk2

240k4

g3 = 25k3l3 + 15mk2l2 + 27klm2 − 120almk3− 72ak2m2 − 27m3

43 200k6

(25)

wherec is an arbitrary constant. This was first obtained in [26] using another approach.
A remarkable feature of the solution (25) is that it was found under minimal restrictions

on the parameters of equation (24): namely, one had to determine only a value of an arbitrary
c1. Thus, this solution is valid for arbitrary coefficients in the corresponding equation and
depends on one arbitrary constantc. For any other equation of the form (5) withs > 0 and
n > 2 one cannot find a periodic solution (by means of inversion of the corresponding integral
in (9)) without additional restrictions to the coefficients ofPs(u) andQn(u).

4. Bounded solutions

For applications, the most interesting solutions to equation (24) are among the explicit bounded
periodic and localized functions. To find some of them we use the solution (25) and describe
all cases of degeneration of the℘-function into bounded functions with appropriate parameters
c , g2, g3.

Let 2ω, 2ω′ be the primitive periods of the℘-function defined by the condition
Im (ω′/ω) > 0, and letω1 = ω, ω2 = ω + ω′, ω3 = ω′; eα = ℘(ωα), α = 1, 2, 3 be
roots of the equation 4e3

α − g2eα − g3 = 0, and1 = g3
2 − 27g2

3 be the discriminant [27].
In order to obtain the bounded solutions it is convenient to use the summation theorem [27]

in the form:

℘(z + ωα) = eα +
(eα − eβ)(eα − eγ )

℘ (z)− eα (26)

and relationships for the℘-function and the Jacobi elliptic functions

sn2
(√
e1− e3z,M

) = e1− e3

℘(z)− e3

cn2
(√
e1− e3z,M

) = 1− sn2
(√
e1− e3z,M

) = ℘(z)− e1

℘(z)− e3

(27)

where{α, β, γ } is any permutation of numbers{1, 2, 3}, andM = (e2 − e3)/(e1 − e3) is the
modulus of the Jacobi elliptic functions.

It is well known that the behaviour of the℘-function strictly depends on a sign of1.
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4.1. The case1 > 0

In this case a pair of the primitive periods 2ω, 2ω′ exists, such thatω is real andω′ is pure
imaginary. Then℘(z) is real only on the complexz-plane lines corresponding to the lattice of
periods

Re(z) = 2pω iIm (z) = 2qω′ p, q = integer (28)

and on the lines corresponding to the lattice of half-periods

Re(z) = (2p + 1)ω iIm (z) = (2q + 1)ω′ p, q = integer. (29)

The℘-function has discontinuities on the real axis and, hence, on the lines obtained by means
of shifting of it along the lattice of periods, i.e. on the lines (28), whereas it is bounded on
the lines (29). Therefore, one can obtain a real bounded periodic solutionu(x) from (25)
only if the arbitrary constantc shifts the real line of the variablex to the linex + c, which
coincides with the one of (29). Thusc = c0 +(2q +1)ω′ with an arbitrary realc0 and integerq.
Furthermore, obviously℘(x +(2q +1)ω′) = ℘(x +ω′) for ∀x and integerp. Hence, without a
loss of generality one can takec = c0 +ω′, wherec0 is a real number andω′ is pure imaginary.
Suchc provides the shift of the real axis of the variablex to the line iIm(x + c) = ω′ of the
complex variablex + c. Let us calculate the℘-function value with an argument on that line.

When1 > 0 alleα, α = 1, 2, 3 are real,e1 > e2 > e3, e1 > 0,e3 < 0, and from (25)–(27)
we obtain the following bounded periodic solution to (24) in the form of the ‘cnoidal wave’:

u(x) = 1

4k
− 5l

12m
+ e2

10k

m
+ (e3− e2)

10k

m
cn2

(√
e1− e3(x + c0),M

)
. (30)

4.2. Case1 < 0

In this case the complex conjugated primitive periods 2ω, 2ω′ exist, and provide the
transformation of fundamental parallelogram to a rhombus. Then℘(z) is real only on its
diagonals, i.e. on the lines

Re(z) = p(ω + ω′) iIm (z) = q(ω − ω′) p, q = integer.

Because ofω + ω′ ∈ R, the function℘(x + ω + ω′) is not bounded for realx. Furthermore,
the simple transformations℘(x + ω − ω′) = ℘((x + ω + ω′) − 2ω′) = ℘(x + ω + ω′) mean
that℘(x + ω − ω′) is not bounded, too. Therefore, in the case1 < 0 there are no bounded
real solutionsu(x) in the form (25).

4.3. Case1 = 0

In this case one of two periods is infinite:ω = ∞ orω′ = i∞ (whilst the caseω = −iω′ = ∞
is trivial).

The caseω = ∞ corresponds toe1 = e2 6= e3. Writing e1 = e2 = h, we havee3 = −2h
and

g2 = 12h2 g3 = −8h3 ω = ∞ ω′ = π i√
12h

.

Takingc = c0 +ω′, ∀c0 ∈ R as above and using similar transformations, we obtain the cnoidal
solution

u(x) = 1

4k
− 5l

12m
− h10k

m
+

30kh

m
cn2

(√
3h(x + c0),M

)
.



Exact solutions to a reaction–diffusion equation 6583

NowM = (e2 − e3)/(e1 − e3) = 1, and, due to the relationship cn(u, 1) = 1/ cosh(u), the
functionu(x) has the form of anautosolitonsolution:

u(x) = 1

4k
− 5l

12m
− h10k

m
+

30kh

m
cosh−2

(√
3h(x + c0)

)
(31)

i.e.u(x) is bounded and differs significantly from a constant value only in the vicinity of the
valuex = −c0 of real axis.

The caseω′ = i∞ corresponds toe1 6= e2 = e3. Then, writinge2 = e3 = −h, we have

e1 = 2h g2 = 12h2 g3 = 8h3 ω = π√
12h

.

NowM = 0, and it follows from (27)

℘(z) = e3 +
e1− e3

sn2
(√
e1− e3z, 0

) ≡ −h +
3h

sin2
(√

3hz
) .

These functions are bounded only if
√

3hz = π/2 + iw,w ∈ R⇔ z = ω+ iw/
√

3h. It is easy
to see that one cannot find an appropriatec such thatx + c = ω + iw/

√
3h, wherex,w ∈ R.

Therefore, in the caseω′ = i∞ there are no bounded solutions of the form (25).

5. On values of physical parameters for existence of bounded solutions

In the physical problem of thin films growth described in the introduction it is interesting to
interprete the conditions1 > 0 and1 = 0 in terms of physical parametersb, θ0, φA andφD.

Supposing that the equation (5) obtained from (2) has the form (24), one can easily find the
dependence of coefficientsk, a, l andmon the physical parameters. Then, using1 = g3

2−27g2
3

and the formulae forg2 andg3 from (25), we can find the following explicit expression for1
in terms of physical parametersb, θ0, φA, φD:

1 = (exp{φDθ0}bφA)6(φAθ0 − 3)2F4(φD)F8(φD)

3 732 480 000θ6
0(1− θ0)6φ

12
D (φDθ0 − 2)12

. (32)

HereF4(φD) andF8(φD) are given polynomials of fourth and eighth degree with respect to an
unknownφD, correspondingly, with coefficients depending only onφA andθ0.

The solutions (30) and (31) are obtained from (25) for parametersφA, φD, b depending on
whether1 > 0 or1 = 0. It is obvious from (32) that the inverse problem of analytical
derivation of the parameters{φA, φD, b} provided1 = 0 or 1 > 0 is hardly solvable.
However, it can be shown that, due to a special factorization ofF8(φD) = S4(φD)H4(φD)

(with polynomialS4 andH4) for any φA and b = exp(−φA/2) (this case corresponds to
θ0 = 1

2, which is very interesting for physics), all 12 rootsφD of1 can be found for any fixed
φA and given value ofb. Numerical analysis was made of the discriminant1 as the function
of the physical parameters based on the program, by which on the plane (φA, φD) for different
b the following domains were separated:

(i) domain I, where bounded (1 > 0) and physicallymeaningful(0 6 θ = θ0 + u 6 1)
solutions of the form (25) exist;

(ii) domain II, where bounded (1 > 0) but physicallymeaninglesssolutions (θ < 0, or
θ > 1) of the form (25), and three roots of equation (4) (bmin(φA) < b < bmax(φA)) exist,
while the second root is taken asθ0;

(iii) domain III, where bounded (1 > 0) but physicallymeaninglesssolutions (θ < 0, or
θ > 1) of the form (25), and one rootθ0 of equation (4) (b < bmin(φA), or b > bmax(φA))
exist.
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Figure 1. Domains of the(φA, φD) plane, where different types of solutions exist, forb = 0.01.

In figures 1 and 2 these domains are shown for someb, obtained as the result of calculations.
In figures 3 and 4 the functionsθ(x) = θ0 + u(x) are plotted, whereu(x) is defined by (30)
or (31), and the numberθ0 is a solution of (4). The natural limits for the physical parameters
are: φi = 4± ε, |ε| 6 4, (i ≡ A,D); b > 0, andc0 = 0. The plots are shown for the
values of parametersφA = 4.5, b = 0.1 and variousφD. For suchb equation (4) has three
roots, from which the second one was taken asθ0 (θ0 = 0.4). The plots ofθ(x) with values of
φD providing1 = 1(θ0, φA, φD) > 0 are shown in figure 3, while the case ofφD providing
1 = 1(θ0, φA, φD) = 0 corresponds to figure 4.

It is seen from figures 1 and 2 that the most interesting domain I corresponds to physically
meaningful values ofb, φA and φD, which yield the stationary solution to the problem
considered in either periodic (30) or localized (31) form.

6. Generalizations

In section 2 we described the method of finding some stationary solutions to equation (7) in
terms of elliptic functions. We have noted that the implicit solution (8) for polynomialA(u)

andD(u) reduces to the Abelian integral (9). A natural question arises: do reaction and
diffusion functions exist, that are not polynomials and provide an implicit solution to equation
(7) in terms of the Abelian integral? Let us show that the answer is positive.

In general, the Abelian integral has the form

I =
∫
R(u, v)du (33)
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Figure 2. As figure 1, but forb = 0.08.

Figure 3. Periodic solutionsθ(x) = θ0 +u(x) of the form (30) forb = 0.1,φA = 4.5 and different
values ofφD : (a) φD = 4.1; (b) φD = 3.2; (c) φD = 1.8.
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Figure 4. Autosoliton solutionsθ(x) = θ0 + u(x) of the form (31) forb = 0.1, φA = 4.5 and
different values ofφD : (a) φD = 3.1; (b) φD = 1.8; (c) φD = 5.6.

whereR is a rational function of its variables, whilev is an algebraic function, i.e. a solution
to the following equation:

P(u, v) = 0

with P being a polynomial of the two variables. The integral in the implicit solution (8) is
Abelian if the following relationship is valid:

D(u)√
c1− 2

∫
A(u)D(u) du

= R(u, v) ∀u ∈ R

for some rationalR and algebraicv = v(u). Expanding this, we obtain the following
relationship on functionsA,D andR:

A(u)R3(u, v(u)) +D′(u)R(u, v(u))−D(u)dR (u, v(u))
du

= 0. (34)

This can be interpreted from various points of view. If, according to physics, equation (7)
contains the functionsA andD satisfying (34) for someR, then the implicit solution arises
in terms of the Abelian integral. On the other hand, we can consider this relationship as the
equation on the functionw(u) = R(u, v(u)) with coefficients defined by functionsA andD.
In this case, (34) represents the Abel equation forw(u).

If A andD satisfy (34), then we can apply the approach proposed above. Namely, if (34)
holds forR(u, v) = 1/v = 1/

√
P3,4(u) with P3,4 being a polynomial of third or fourth order,

then the inversion of the corresponding implicit solution yields the explicit solution in the form
(17) or (15). If the hyperelliptic case occurs, that is, ifR(u, v) = (α + βu)/

√
P5(u), then

propositions 3 and 4 can be applied, resulting in explicit solutions (21)–(23).
In particular, it follows from (34) that ifD(u) is arbitrary andA(u) is defined as

A(u) = −(P3,4(u)D
′(u) + 1

2P
′
3,4(u)D(u))
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for arbitrary polynomialP3,4 of third or fourth order, then equation (7) has explicit solution of
the form (17) or (15), respectively.

7. Discussion and conclusions

Firstly, we consider briefly the well known nonlinear heat conduction problem. The power
functionsA(u) andD(u) arise in equation (1) when used for modelling heat conduction and
nonlinear combustion processes in dissipative media. These equations describe the spatial
heat localization and blow-up effects (infinite growth of temperature during a finite interval of
time): see, e.g., [7]. The corresponding stationary equation has the form

(uαu′)′ + uγ = 0 (35)

and (8) now yields thegeneralimplicit solution

x = c2 +
1

α + 1

∫
dv√

c1− 2vδ/(α + γ + 1)

wherev = uα+1, δ = 1 +γ /(α + 1). Thus one has the following possibilities:

(i) if γ = α + 1 thenδ = 2, and the periodic solutions to equation (35) have the form

u = A1 sin1/(α+1)(A2(x − c2))

with arbitrary constantsA1 andA2;
(ii) if γ = 2(α + 1) or γ = 3(α + 1) then, correspondingly,δ = 3 or δ = 4, and the periodic

solutions in this case are found as:

u = B1℘
1/(α+1)(B2(x − c2); g2, g3)

with arbitrary constantsB1,2 and invariantsg2,3.

Thus, for every exponentα, γ corresponding to valuesδ = 3 orδ = 4 one can investigate
the blow-up processes by means of extraction of a set of attraction for the corresponding
unbounded stationary solutions (i) and (ii) from the set of initial functions for equation (1)
with the power functionsA andD.

Now let us briefly repeat the scheme proposed for derivation of the bounded solutions
(30), (31) in a physical problem.

For given values of physical parametersφA,φD, b one has to calculate the invariantsg2 and
g3 and the solutionθ = θ0 +u by means of (25). This solution is valid for any given parameters
φA, φD, b and depends on the arbitrary constantc. In order to find out whether one can obtain
the bounded periodic (‘cnoidal’) or the localized (‘autosoliton’) version of that solution by
an appropriate choice ofc one has to find the value of the discriminant1 = g3

2 − 27g2
3. If

1 < 0, then the solution is unbounded for anyc. If 1 > 0, then takingc = c0 + ω′, where
c0 is an arbitrary real number andω′ is the pure imaginary half-period of the℘-function with
the invariantsg2, g3, one obtains the periodic solution in the form (30), wheree1, e2, e3 are
roots of 4e3

α − g2eα − g3 = 0, descending by value:e1 > e2 > e3. Finally, if 1 = 0, then
there are two possibilities for the rootse1, e2, e3 (ordered as above): namelye1 = e2 6= e3 or
e1 6= e2 = e3. The first case corresponds to an infinite real period of the℘-function, and in this
case one obtains the autosoliton solution of the form (31), whereh = e1 = e2. In the second
case the℘-function has the infinite pure imaginary period, so the solution is unbounded for
anyc.

Finally, we should mention the experiments in thin film growth [18] which resulted in
periodic nanostructures formation, often called ‘quantum’ wires and dots. Up to now there has
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only been a few solutions in closed form which could be useful to describe such complicated
phenomena.

The solutions (30) and (31) may provide a reasonable description of the nanostructures
observed.
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