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Abstract. An approach is proposed to obtain some exact explicit stationary solutions in terms of
elliptic functions to a nonlinear reaction—diffusion equation. The method is based on the reduction
of the hyperelliptic integral to the elliptic one and its inversion via the Weierstrass and Jacobi
elliptic functions. The solutions for both polynomial reaction and diffusion functions include
bounded periodic and localized (in space) functions. Such solutions seem to be the best candidates
to describe periodic nanostructures observed in experiments on formation of thin films by means
of molecular epitaxy (the so-called ‘quantum wires’). Generalization of the approach is discussed
for reaction and diffusion functions distinctive from polynomials. In particular, explicit stationary
solutions are found in terms of elliptic functions for arbitrary diffusion and relevant reaction terms.

1. Introduction

In this paper we propose an approach to find some exact stationary quasi-periodic solutions to
a nonlinear diffusion equation with a reaction teAtu):

u, = (DWu'), + Au) 1)

where bothD (1) and A (1) are known functions aof (x, 7).

Depending on a particular form of these functions, equation (1) appears in population
genetics, combustion theory, continuum physics, selforganization phenomena, interphase
interactions physics, etc [1-11]. The most common versions of the nonlinear equation
considered are known as the KPP or Fisher equation, occurring in population dynamics and
combustion theory. Some of the simplest exact solutions were found [3] by means of phase
plane analysis. Numerical analysis has been widely used to study the modified Selkov model for
cubic chemical reaction in hyperbolic or parabolic diffusion limit, see e.g. [4], while in [5] the
lattice Boltzmann equation was used to yield a parabolic reaction—diffusion model. However,
complete description of the possible set of exact solutions seems not to have been achieved,
even for an ODE version of a nonlinear problem, having both arbitrary reaction and diffusion
terms. An important problem arises in the derivation of exact solutions (and, in particular, of
exact explicit solutions for the corresponding stationary equation) widely used as test points
in numerical simulations.
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The problem under consideration has also been studied by means of group theory methods.
The complete group of Lie point symmetries for equation (1) with various reaction and diffusion
functions can be foundin [8]. Corresponding invariant solutions for blow-up process modelling
in heat conduction are widely used, see [7]. Nonclassical symmetries of (1) were considered
in [6], and the corresponding new invariant solutions were obtained for exponential and power
diffusion terms. The description of particular nonclassical symmetries of (1) with arbitrary
diffusion function was given in [6], which led to some exact periodic invariant solutions.

We are aiming to obtain some new exact periodic and localized solutions by means of a
different approach. Most of the solutions to equation (1) obtained for either exponential or
power law are assumed to be valid for diffusion and reaction functions. Surprisingly, in other
cases symmetry methods almost always provide only trivial group solutions. The connection
between symmetry methods aad hocmethods of derivation of exact solutions is still not
clear, which makes the latter methods important for the understanding of the different effects
governed by (1). On the other hand, the methods we use are based on the classical results
of the theory of hyperelliptic integrals and their reduction to elliptic ones, which seems to be
useful in many applications.

The paper is organized as follows. Sections 2 and 3 are devoted to description of the
method for obtaining exact solutions to equation (1) with polynomial) andA (1) in terms
of elliptic functions, that is based on reductions of hyperelliptic integrals. In section 4 we
obtain the corresponding bounded periodic and localized solutions. Section 5 is devoted to the
numerical analysis of physical parameters providing the bounded solutions. Generalization of
the approach for botA (1) and D (1) distinctive from polynomials is given in section 6.

Equation (1), containing botpolynomialreaction and diffusion terms, seems to be the
mostimportant for physical applications. Here, we briefly discuss its derivation in the relatively
new mathematical model [12,13] of description of the adsorbate growth kinetics on a surface by
means of molecular beam epitaxy, which is widely used in microelectronics. Such processes
are usually described in terms of phenomenological approaches to the thermodynamics of
irreversible processes, lattice gas models and their modifications (see, e.g. [12-14]). Withinthe
framework of phenomenology the question arises of how to determine a connection between
the growth kinetics and the description of adsorption, desorption and diffusion elementary
processes. On the other hand, the use of lattice gas models does not necessarily lead to
appropriate formulation of a single kinetic equation, in which all elementary processes are
taken into account, and which is useful for description of adsorbate growth at all stages. A
starting point for finding a relationship between phenomenological and microscopic theories
of adsorbate metastability seems to be given by the so-called generalized kinetic Brunauer—
Emmet-Teller (BET) model for multilayer adsorbate growth from a one-component gas under
isothermal conditions [12-14]. This model is intermediate between the master equation
method [15] and the BET model [16], and deals with the microscopic approach based on time-
dependent lattice gas models. An advantage of this model is that it makes it possible to consider
the adsorbate growth kinetics taking into account the influence of different microscopic
processes, adsorption regimes, inhomogeneities in the substrate and molecular beam, without
using phenomenological parameters and additional assumptions on a growth mechanism. The
adequacy of this model was confirmed both by its correct limit transitions to the classical
results of the adsorption theory and the experimental results [17, 18].

In the case of the monolayer growth dynamics under natural constraints for the BET
model, the continuum one-dimensional limit of the master equation for the probalgiity)
of finding a particle in a surface poift= (x, y) at timer takes the form

A0(F, 1)

2 = Vi(DO)Vi0) + A®) 2
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A(0) =b(1—-0) — 0 exp(—¢ad) D) =[1— ¢pt(1—6)]exp(—¢p0) ®3)

whereb, ¢, and¢p are given physical parameters of the model.
It is easy to see that in order to obtain a solution to (2) which does not depend on space
and time variables, one has to solve the following transcendental equation:

A@®) =b(1—0) —0e " =0, (4)

For values ofb belonging to the open intervahin < b < bmax (Wherebmin = (05 /67) x
exp(—p403); bmax = (01 /63) exp(—¢467); andby', = (1F 5/I=14/$4)) there are at most

three solutionsédy < 6, < 63) to (4). A rooté, is thermodynamically unstable and, in the
case of various roots of (4), it describes the coexistence of a gas phase with chemical potential
proportional to log and two adsorbate phases with constant coverage véldute phase)

andfs (dense phase), see [13]. Hence, it is of interest for physics to study equation (2) for
thosef that are in a small vicinity of roots of equation (4). Introducihg= 6y + u, where

6o is a root of (4), and writing exponential terms in (3) as power series with respearnd
omitting higher-order terms, one can obtain the one-dimensional stationary version of (2) in
the form

(Ps)u')' + Q,(u) =0 (5)
where
Py(u) = 1+ pau+ pou’ + - -+ pou’ ©)
Qn(u) = u(qo+quu +- -+ qu_qu" ")
and coefficienty;, g; are given functions of physical parameters. These functions are evidently
not zero, which makes the problem of derivation of exact solutions to (5) with arbitrary
polynomialsP; and Q,, very important.
Equation (5) also arises in many other applications. For example, it represents the
stationary version of the generalized Fisher equation used in population genetics. For this

reason we first consider (5) for arbitrary values:ofAfter the solutions to (5) are obtained,
they are analysed (in sections 4 and 5) for @ < 1.

2. Analysis of the stationary equation

The stationary version of equation (1) in the form

(D@)u")' + A(u) =0 (7)
for arbitrary functionsA (u) and D(u) can be reduced by means of the transformation [26]
v(u) = W)?

to the following linear equation:
v+ fu)v = g(u)
where
f) = (og D))y, gu) = —2Aw)/D(w).
Solving it, we obtain the following implicit solution to equation (7):
Y=o +/ D(u)
\/cl — 2 A@w)D(u) du

wherec; andc; are arbitrary integration constants.

du 8)
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The problem of derivation of exact explicit solutions to equation (7) with arbitrary
functionsA (u) and D () is reduced, thereby, to the inversion of the integral in (8).

Now assume that both diffusion and adsorption functions are polynomials,= P; (),
A(u) = Q,(u), of the form (6) with coefficientp;, g; to be specified by a problem under
consideration. Lepy = 1 andQ,(0) = 0 be assumed for simplicity: this is quite typical
for various physical problems; however, an analysis can be done in a similar way for arbitrary
polynomialsP; (1), Q, (1) of orderss andn, respectively.

Due to the assumption, (8) leads to the following solution to equation (7):

X=Cz+/ Fs@) du=co+ ﬂ
\/Cl — 2/ Q, () P;(u) du v Rvn+1(ut)

du. )

The integral in (9) is the Abelian one. The inversion problem for Abelian integrals of the first
kind, i.e. the Jacobi inversion problem [19], is solved in terms of Abelian functions, which are
the single-valued, analyti¢-dimensional, and 2periodic functions. Explicit formulae for

the solutions can be obtained in terms of multi-dimensional Riemfidanctions. In particular,

for k = 1, elliptic functions will constitute the appropriate limits. The corresponding Jacobi
inversion problem coincides with the inversion problem for the elliptic integral of the first kind,
and relevant explicit formulae for solutions represent the well known relationship between the
Jacobi and Weierstrass elliptic functions and the Jagdhinctions, [27].

An elliptic integral of the first kind appears in (9) sf = 0 andrn = 2, 3. Calculating
its inverse, a solution to equation (7) in terms of elliptic functions can be obtained, when a
constant diffusion and a polynomial adsorption of fourth order are given. The solution depends
on two arbitrary constantg andc;.

Fors > 0 andn > 2 the hyperelliptic integral in (9) cannot have a single-valued inverse
function in the general case. However, in some particular cases a hyperelliptic integral of
the first kind is reduced to an elliptic integral of the first kind, which is invertible in terms of
elliptic functions introduced by Jacobi and Weierstrass. For such reduction to be valid one
has to impose corresponding constraints for numbersand for coefficients of polynomials
Ps(u) and Q, (u).

2.1. Simplest reduction

Factorization of the polynomiaR;.,+1(1) seems to be the simplest case of the reduction of
(9). Namely, it results in an elliptic integral of the first kind, if the following relationship is
valid:

Rywns1(ut) = [Py(u)]? Ra.a(ut) (10)

where Rz.4(u) is a polynomial of third or fourth order. It is easy to see from (10) that the
factorization is possible onlyf —s —2=00rn —s —3=0.

Let us assume = s + 3 with arbitrarys (which corresponds to the polynomi&h(u)
in (10)). Collecting coefficients with the same poweruwoin the left-hand side of (10) and
making them equal to the corresponding terms in the right-hand side, one can reduce (10) to
a linear system of algebraic equations, in which the coefficient8,af) are variables. If



Exact solutions to a reaction—diffusion equation 6577

by, = p? # 0, then the basis mina® of the resulting system has the form

bay bag 1 ba 2 ba3 ba 4
0 by ba1 b2 b3
Q=] 0 0 bay  bas_1 ba_>
0 0 0 bas  by_1 (11)
0 0 0 0 by

be= Y 8;pip k=0,...,2s and b =0 k<O
i,j=0

wherep; are from (6) and¥ is the Kronecker's symbol. Let us also denote

ras

A = Q : i=0...,2—1

T25+4
bi e b,',4 ri (12)

2 (s,n) B
ro=-c1 sz—z Z 81{1]’1}7[6]/‘71 k=1 ...,s+n+1
(i,/)=(0,1)
whereg; are from (6). Note that; = 0; however, it does not provide any simplification of
the solution below. Using standard linear algebra, one can conclude that, if and only if the
following condition is valid:

detA; =0  i=0,...,25—1 (13)

then the famous Cramer formulae yield the following unique solutin. . ., £4) (i.e. the
coefficients of the polynomiak4(u«)) to the algebraic system under consideration:

1 ,
%‘i = b_5 Z r2.r+j—1Qj,i+l 1 = O, ey 4 (14)
2s j=1
whereg; ;+1 is the minor of the matrix elemeif2) ; ;+1. Thus, we are ready to formulate the
following proposition.

Proposition 1. If for arbitrary s, n = s + 3and p,; # 0the conditions (13) on the coefficients
of equation (5) are valid, then this equation has the following solution:
2
ux) =a — a (15)
20 (x +c2; g2, g3) — az

whereq is a root of the polynomials(u) = & +&wu +- - - + E4u?, & are given in (14), and the
constants

a; = %P’(oz) ap = %ZP”(a) az = 2—14P’”(a) as = 2—14P(4)(Ot)
define the invariants

82 = 3(1% - 4(11(13 83 = 2a1a2a3 — ag - afa4.
Proof. If (13) holds, then the factorization (10) takes place i) as written above. Hence,

the integral in (9) is elliptic of the first kind, and formula (15) is the result of its inversion. That
completes the proof. O

Repeating the scheme described above with obvious changes in the ease- 2 (i.e.
for the cubicRs () in (10)), one obtains the following result.
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Proposition 2. If for any arbitrarys, n = s + 2and p, # 0in P,(u) the following conditions
on the coefficients of the equation (5) are valid:

detA; =0 i=0,...,2s—1 (16)
then equation (5) has the following solution:

4
u(x) = o <60 (x +c2; g2, 83) — i—22> (17)

where

1< - :
{'i:b—“zrzﬁj_lﬂj,ﬁ.l i=0,...,3
1

25 Jj=
8 = 5(tF — 30183) 83 = 355(910283 — 2T¢0Z — 263).

Here matrice<? and A; are formed from matrice® and A; by omitting the fifth column and
the fifth row, respectively.

2.2. Reductions in the case of linear diffusion and cubic or quartic adsorption

Factorization of the form (10) is not the only way resulting in successful inversion of the integral
in (9). Methods of Riemann surfaces geometry allow to obtain some other exact solutions.

The most developed case of the hyperelliptic integral reduction occurs when2,
whereg is genus of the Riemann surface corresponding to the integral in (9), that is, the case
s = 1 andn = 3 or 4. The problem of such reduction attracted much attention [24, 25] in
the theory of nonlinear equations integrable by the inverse scattering transform method due
to a possibility to reduce the problem of periodic solutions of such equations to the Jacobi
inversion problem [20]. Necessary and sufficient conditions are known [24] for the reduction
of an arbitrary hyperelliptic integral of the first kind to the elliptic one formulated in terms
of the 2x 2 matrix{B;;} of the hyperelliptic integral periods on the corresponding Riemann
surface:

ky + kaB11 + k3B1p + kaBo + ks(B11Ba2 — B) =0 (18)

for some integek;. The problem of formulating criterion (18) in terms of the polynomial
coefficients in a hyperelliptic integral (i.e. explicitly in terms of the coefficients of the initial
differential equation) is far from being solved. However, besides the reduction by means of
factorization ofR;+,+1(1) in the cases = 1,n = 3,4 one can use the reduction examples,
which were found in the cage= 2 by Jacobi, Hermite, Burnside and Bolza.

The Jacobiformula[21,24] describes all possible reductions &atisfying the following
relation:

k3 + A(kiks — koks) = 4
and has the form
(L+cy)dy 1 |:( 1 > ( 1 ) :|
= - +c)Ji— —c)J-
VYO =D —a)y—b)(y—ab) 2| \Vab Jab

where

; _/ dz

T doaa- @)

7= W (c )ZZ_M
(y —a)(y — b) - 1—a)1—b)
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The Burnside reduction [22, 24] is given by the formulae

/(1+2c)(y+1/2)—c(2+c) dy:/ 1 d (19)
w EE — DE — yo)
(y+c+3) / 1
22y = d 1%
/ v U7 Tecoc_ac-o " (1%0)
w?= (2 - H{O+ DO+ +20+H% - y[L+20)(y + 3) + P (19c)
12y +1/2+ 2 +cP)?
[+ 2)(y+1/2)+ 22 (1%
3 2 _ 2
(- (r+1/2)3 +c2(y +1/2) + 2c — &[(y + 1/2)(1 + 2) + 7] (19)

y2—1/4

wherec, yo and&g are arbitrary constants (in particular, foe= —% formulae (19) represent
the Hermite reduction [24]).

Fors = 1,n = 3 the use of these reductions yields the elliptic integrals in the implicit
solution (9). Inverting them, we obtain the following propositions.

Proposition 3 (Jacobi reduction).Let zy, ..., z5 be roots of the polynomiaks(u) from (9)
(for simplicity they are supposed to be different), and the following conditions be valid:

(z2 —z1)(z5 — 21) = (23 — 21) (24 — 21)

po+ p1z1 = £p1v/ (23 — 21)(za — 21). (20)
Then the equationP; (u)u’) + Q3(u) = 0 has a family of solutions

u(x) = (z2 —z0) X (v (x)) + 21 ,

vi(x) = %KJ [(Zz — 23 +;f1(zzf — 2 (x +¢2); 82+, g3,i:| + % @D

where

V(Y- F Ve )
(z2 — z3)(22 — 24)
gt =1+ — 28] gax = sra(L+ DL +c2)? — 3cE]

and X (i), being the function of its unknown is defined as a root of an algebraic equation

2 _
cL =

+74—2 - - -
X2 <MZ3 24—2z1 (22— 239)(z2 n Z4)> X+, 8574 g
22— 21 (z2 —z1) 22—
Recall thatrs is defined in (12); indicest’ and ‘-’ in the above formulae correspond t®*
and ‘-’ signs in (20), respectively.

Proposition 4 (Burnside reduction). (i) Let the coefficienty;, ¢; be such that the integral
in the implicit solution (9) is reducible to the integral in the left-hand side of (19a), i.e.
Py _ A+200+1/2) —c+o)

VRs(y) w

wherew is from (19¢). Then the equatiarPy(u)u’) + Q3(u) = 0 has the following

solution in terms of the Weierstrass elliptic function:
u(x) =Y ((x))
v(x) = 4p [/rs(x +c2); g2, g3] + 3(1 +yo)

VyeR

(22)
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where

g2 = 5[ (1 +y0)* — 2] 83 = 515(1 +y0)[(1 +y0)* — 3yo]

with yg and ¢ being arbitrary constants, and the functidt{i) defined as a root of the
cubic equationt® + Co() Y2 + C1()Y + Co(i) = 0 with the following coefficients:

Co(w) = g1 —2w) + A — e + (§ — 2u)c? + 21 — W+ (3 — we*
Ci(p) = 3 — i+ 41— e +6(1— p)c® + 41— pc’ +¢*
Co(w) = 3(1+20)[3 — 2u + (2 — 4u)c].

(ii) Let the coefficient;, g; be such that the integral in the implicit solution (9) is reducible
to the integral in the left-hand side of (19b), i.e.

Pi(y)  y+c+1/2
VRs()  w

Then the equatioOPy(u)u’) + Q3(u) = 0 has the following solution:

Vy e R.

u(x) = Z(w(x))

1 23
v(x) =4p |:\/—r_5(x+02);82,83} + (61t 82+ 83) (23)
D1 3
where
g2= Sle2+2+c3 g3 = 15[21008 + 268 + 65 + 8]

and the functiorZ (1) is defined as a root of the equati@i+ By(11) Z?+ B1Z+ Bo(1) = 0
with the coefficients:

Bo(w) = 3[1+2u — 480+ 8(2 — &o)c + 41 — 280)c?]
By =3 —éo(1+2) +c?
Bo(w) = § — .

Numbers;y, ¢, ¢3 are defined by the following equations:

G+ 8o+ 83 =4+yo+ (4yo — 2)c + (4yo — 2)c?

G182 + G183 + 283 = 3yo + 5o + 2(7yo + 560 — 3)c + 6(3yp — 2)c? + dygc® + ¢*

016203 = —Hyo(4E0 — 2) + 250 + 2[9 + 2y0(650 — 1) — 280]c + [3yo(1650 + 1)
—315]c? + 8[1 + (4yo — 2] c® + (12— Llyg)c* + 2

for arbitrary yg, c andé&.

We note that all square roots in the last propositions are arithmetic. All expressions in
the roots are supposed to be real and positive for simplicity, such that all the solutions listed
above are real single-valued functions. Due to lack of space we do not study the problem of
derivation of coefficienty;,, ¢; providing such assumptions are valid.

Reductions in the case= 1,n = 4 (¢ = 2) can be found in the paper by Bolza [23], see
also [24]. The corresponding formulae for exact solutions seem to be complicated for further
applications.
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3. Periodic solutions to the problem with linear diffusion and cubic adsorption functions

For application to adsorption—diffusion process modelling, it is of interest to consider the case
s = 1,n = 3 in more detail, that is
L +kw)u” +k@W)?+ua+lu+mu®) =0 (24)

wherek, a, [, m are constant.
Condition (16) is now written as

m (1 5 5
Cl1 = ——= _— -
Y752 \2%2 " 3 6km

which allows us to apply proposition 2 and to obtain the following solution to equation (24):

) = 1 ) 10k e )
ux _4k 12’71 mK’)x Cvg27g3
2klm + 5k212 — 3m? — 16amk?
g2 = 2 (25)
240k
25k313 + 15mk212 + 27kim? — 12Quimk® — 72ak?m? — 27m*

§3= 43 2005

wherec is an arbitrary constant. This was first obtained in [26] using another approach.

A remarkable feature of the solution (25) is that it was found under minimal restrictions
on the parameters of equation (24): namely, one had to determine only a value of an arbitrary
c1. Thus, this solution is valid for arbitrary coefficients in the corresponding equation and
depends on one arbitrary constantFor any other equation of the form (5) with> 0 and
n > 2 one cannot find a periodic solution (by means of inversion of the corresponding integral
in (9)) without additional restrictions to the coefficients®i{u) andQ,, (u).

4. Bounded solutions

For applications, the most interesting solutions to equation (24) are among the explicit bounded
periodic and localized functions. To find some of them we use the solution (25) and describe
all cases of degeneration of thefunction into bounded functions with appropriate parameters
c, 82,83

Let 2w, 20’ be the primitive periods of they-function defined by the condition
Im(0'/w) > 0, and letw; = w, w; = w+ o, w3 = &' ¢, = p(wy), @« = 1, 2, 3 be
roots of the equationd§ — goe, — g3 = 0, andA = g3 — 27¢3 be the discriminant [27].

In order to obtain the bounded solutions itis convenient to use the summation theorem [27]
in the form:

(eq —ep)(eq —ey)

P twy) =eyt+ (26)
BO (Z) — €y
and relationships for the-function and the Jacobi elliptic functions
srf («/61 — e3z, M) = ﬂ
P (z) —e3 @7
o (Ver — esz, M) = 1= sif (Ver — esz, M) = gz; - Zl
— €3

where{w, B, v} is any permutation of numbefg, 2, 3}, andM = (e, — e3)/(e1 — e3) is the
modulus of the Jacobi elliptic functions.
It is well known that the behaviour of the-function strictly depends on a sign of
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4.1. The casé&\ > 0

In this case a pair of the primitive period& 22« exists, such thab is real andw’ is pure
imaginary. Thenp (z) is real only on the complexplane lines corresponding to the lattice of
periods

Re(z) = 2pw ilm (2) = 29’ p,q = integer (28)
and on the lines corresponding to the lattice of half-periods
Re(z) =(2p+Dw ilm(z) =29+ Do’ p, g = integer (29)

Thep-function has discontinuities on the real axis and, hence, on the lines obtained by means

of shifting of it along the lattice of periods, i.e. on the lines (28), whereas it is bounded on

the lines (29). Therefore, one can obtain a real bounded periodic solutiorfrom (25)

only if the arbitrary constant shifts the real line of the variable to the linex + ¢, which

coincides with the one of (29). Thus= ¢o+ (2¢ + 1)’ with an arbitrary reaty and integey,.

Furthermore, obviously (x + (29 + D)w') = o (x +’) for Vx and integep. Hence, without a

loss of generality one can take= co + ', Wherecg is a real number and’ is pure imaginary.

Suche provides the shift of the real axis of the variabl¢o the line ilm(x + ¢) = o’ of the

complex variabler + ¢. Let us calculate the-function value with an argument on that line.
WhenA > Qalle,,a = 1,2, 3arereak; > e; > e3,¢1 > 0,e3 < 0, and from (25)—(27)

we obtain the following bounded periodic solution to (24) in the form of the ‘cnoidal wave’:

1 51 10k 10k
u(x) = E—@Mz—ﬂes—ez)—cn (vVer —es(x +co), M). (30)
42. CaseA <0

In this case the complex conjugated primitive periods, 2«’ exist, and provide the
transformation of fundamental parallelogram to a rhombus. Thér) is real only on its
diagonals, i.e. on the lines

Re(z) = p(w+ o) im (z) = g(w — o) p,q = integer

Because ofv + o’ € R, the functionp (x + w + ') is not bounded for real. Furthermore,
the simple transformations(x +w — ') = p((x +w + ') — 20') = p (x + ® + @) Mean
thatp (x + w — ') is not bounded, too. Therefore, in the case< 0 there are no bounded
real solutions:(x) in the form (25).

4.3. CaseA =0
In this case one of two periods is infinite:= oo or o’ = ico (Whilst the case = —iw’ = 0o
is trivial).

The casev = oo corresponds te; = ey # e3. Writing ey = e, = h, we haveez = —2h
and

g2 = 12]’12 g3 = —8h3 w =0 a)/ =

Takinge = cg+ ', Yeo € R as above and using similar transformations, we obtain the cnoidal
solution

15 10k 30k
u() = 2= o —h=—+ («/_(x+co) M)
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Now M = (e; — e3)/(e1 — e3) = 1, and, due to the relationship ¢n, 1) = 1/ coshu), the
functionu(x) has the form of amutosolitonsolution:

1 51 10k 30kh
== 2 2 osh 2 (V3R + 1
u(x) ) - - cos ( 3h(x co)) (32)

i.e.u(x) is bounded and differs significantly from a constant value only in the vicinity of the
valuex = —cq of real axis.
The casey’ = ico corresponds te; # e, = e3. Then, writinge, = e3 = —h, we have

T
e1=2h g2 = 12h? g3 = 8ns w= .
V12h
Now M = 0, and it follows from (27)
e1—e3 3h
$(2) =e3+ =—h+t—F—-—.
7 (Vo1 — e, 0) si? (vaic)

These functions are bounded onlyiBhz = n/2+iw,w € R & 7z = w+iw/+/3h. Itis easy
to see that one cannot find an appropriageich thatc + ¢ = o + iw/+/3h, wherex, w € R.
Therefore, in the case’ = ico there are no bounded solutions of the form (25).

5. On values of physical parameters for existence of bounded solutions

In the physical problem of thin films growth described in the introduction it is interesting to

interprete the conditiond > 0 andA = 0 in terms of physical paramete¥séy, 4 andegp.
Supposing that the equation (5) obtained from (2) has the form (24), one can easily find the

dependence of coefficienitsa, [ andm on the physical parameters. Then, using g§—27g§

and the formulae fog, andgs from (25), we can find the following explicit expression far

in terms of physical parametebs6g, ¢4, ¢p:

_ (explppbotbda)®(abo — 3)?Fa(dp) Fs(¢dp)
~ 37324800088(1 — 60)8¢2(¢pbo — 2012

Here F4(¢p) and Fg(¢p) are given polynomials of fourth and eighth degree with respect to an
unknownep, correspondingly, with coefficients depending onlygnandé,.

The solutions (30) and (31) are obtained from (25) for parametgrép, b depending on
whetherA > 0 or A = 0. It is obvious from (32) that the inverse problem of analytical
derivation of the parametefig4, ¢p, b} providedA = 0 or A > 0 is hardly solvable.
However, it can be shown that, due to a special factorizatioAgtbp) = Si(¢p)Ha(dp)
(with polynomial S5 and Hy) for any ¢4 andb = exp(—¢4/2) (this case corresponds to
0o = % which is very interesting for physics), all 12 roats of A can be found for any fixed
¢4 and given value ob. Numerical analysis was made of the discriminAnas the function
of the physical parameters based on the program, by which on the glangy) for different
b the following domains were separated:

(32)

(i) domain I, where boundedX > 0) and physicallymeaningful(0 < 6 = 6y +u < 1)
solutions of the form (25) exist;

(i) domain II, where bounded/A > 0) but physicallymeaninglessolutions ¢ < 0, or
6 > 1) of the form (25), and three roots of equation #hik(¢a) < b < bmax(¢Pa)) eXist,
while the second root is taken és

(iif) domain Ill, where bounded4 > 0) but physicallymeaninglessolutions ¢ < 0, or
6 > 1) of the form (25), and one ro6g of equation (4) & < bmin(¢4), Orb > bmax(d4))
exist.
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L )

6 7 q>A3

Figure 1. Domains of thg¢a, ¢p) plane, where different types of solutions exist, foe 0.01.

Infigures 1 and 2 these domains are shown for sibrobtained as the result of calculations.
In figures 3 and 4 the functiorfgx) = 6y + u(x) are plotted, whera(x) is defined by (30)
or (31), and the numbe, is a solution of (4). The natural limits for the physical parameters
are: ¢; = 4+e, el <4,(i = A,D); b >0, andcy = 0. The plots are shown for the
values of parametexs, = 4.5, b = 0.1 and variousp,. For suchb equation (4) has three
roots, from which the second one was takefi@®, = 0.4). The plots ob (x) with values of
¢p providing A = A(6g, ¢a, ¢p) > 0 are shown in figure 3, while the casedgf providing
A = A(bg, ¢4, ¢p) = 0 corresponds to figure 4.

Itis seen from figures 1 and 2 that the most interesting domain | corresponds to physically
meaningful values ob, ¢, and ¢p, which yield the stationary solution to the problem
considered in either periodic (30) or localized (31) form.

6. Generalizations

In section 2 we described the method of finding some stationary solutions to equation (7) in
terms of elliptic functions. We have noted that the implicit solution (8) for polynomial)
and D(u) reduces to the Abelian integral (9). A natural question arises: do reaction and
diffusion functions exist, that are not polynomials and provide an implicit solution to equation
(7) in terms of the Abelian integral? Let us show that the answer is positive.

In general, the Abelian integral has the form

1 =/R(u,v)du (33)
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q:.D
5__
1 1
Figure 2. As figure 1, but fob = 0.08.
9 - 0.8
a
j | "
C
-0.3
-40 -20 20 40 X

Figure 3. Periodic solutiong (x) = 6p +u(x) of the form (30) forb = 0.1, ¢4 = 4.5 and different
values ofpp: (a) ¢p = 4.1; (b) op = 3.2; (c) ¢p = 1.8.
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0

r0.8

-20 -10 10 20 x

Figure 4. Autosoliton solution® (x) = 6p + u(x) of the form (31) forb = 0.1, ¢4 = 4.5 and
different values ofp: (a) ¢p = 3.1; (b) pp = 1.8; () ¢p = 5.6.

whereR is a rational function of its variables, whileis an algebraic function, i.e. a solution
to the following equation:

Pu,v)=0

with P being a polynomial of the two variables. The integral in the implicit solution (8) is
Abelian if the following relationship is valid:

D(u)
\/cl — 2 A)D(u) du

for some rationalR and algebraicw = wv(u). Expanding this, we obtain the following
relationship on functiond, D andR:

= R(u, v) Yu e R

dR (u, v(u))
du N
This can be interpreted from various points of view. If, according to physics, equation (7)

contains the functiond and D satisfying (34) for someR, then the implicit solution arises

in terms of the Abelian integral. On the other hand, we can consider this relationship as the

equation on the functiom (1) = R(u, v(u)) with coefficients defined by functions andD.

In this case, (34) represents the Abel equationufar).

If A andD satisfy (34), then we can apply the approach proposed above. Namely, if (34)
holds forR(u, v) = 1/v = 1/,/ P3.4(u) with P34 being a polynomial of third or fourth order,

then the inversion of the corresponding implicit solution yields the explicit solution in the form

(17) or (15). If the hyperelliptic case occurs, that isRifu, v) = (@ + Bu)/~/Ps(u), then

propositions 3 and 4 can be applied, resulting in explicit solutions (21)—(23).

In particular, it follows from (34) that iD(«) is arbitrary and A () is defined as

A(u) = —(P3.a)D'(u) + 3 P3 4(u) D(w))

AW R3(u, v(w)) + D' ()R (u, v(u)) — D(u) 0. (34)
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for arbitrary polynomialPs 4 of third or fourth order, then equation (7) has explicit solution of
the form (17) or (15), respectively.

7. Discussion and conclusions

Firstly, we consider briefly the well known nonlinear heat conduction problem. The power
functionsA(«) and D(u) arise in equation (1) when used for modelling heat conduction and
nonlinear combustion processes in dissipative media. These equations describe the spatial
heat localization and blow-up effects (infinite growth of temperature during a finite interval of
time): see, e.g., [7]. The corresponding stationary equation has the form

@u'y +u’ =0 (35)
and (8) now yields thgeneralimplicit solution
1 dv
0l+1/ Ver =208 /(@+y +1)

wherev = u**1, 8§ = 1 +y /(o + 1). Thus one has the following possibilities:

X=cy+

() if y = +1thens = 2, and the periodic solutions to equation (35) have the form
u = A1 Sin ™D (Ay(x — ¢2))

with arbitrary constantd; and A,;
(i) if y =2(a+1) ory = 3(a +1) then, correspondingly, = 3 or§ = 4, and the periodic
solutions in this case are found as:

u = Bip" ™V (Bo(x — 2): g2. 83)
with arbitrary constant®; » and invariantgy 3.

Thus, for every exponemt, y corresponding to valugs= 3 or§ = 4 one can investigate
the blow-up processes by means of extraction of a set of attraction for the corresponding
unbounded stationary solutions (i) and (ii) from the set of initial functions for equation (1)
with the power functiongt andD.

Now let us briefly repeat the scheme proposed for derivation of the bounded solutions
(30), (31) in a physical problem.

For given values of physical parameters ¢, b one has to calculate the invariagtsand
gz and the solutiod = 6y +u by means of (25). This solution is valid for any given parameters
o4, ¢p, b and depends on the arbitrary constanin order to find out whether one can obtain
the bounded periodic (‘cnoidal’) or the localized (‘autosoliton’) version of that solution by
an appropriate choice efone has to find the value of the discriminant= g3 — 27g2. If
A < 0, then the solution is unbounded for anylf A > 0, then takingr = ¢o + ', Where
co is an arbitrary real number and is the pure imaginary half-period of thafunction with
the invariantsg,, g3, one obtains the periodic solution in the form (30), wheree,, e3 are
roots of 432 — goe, — g3 = 0, descending by valuez; > e; > e3. Finally, if A = 0, then
there are two possibilities for the roats e;, ¢3 (ordered as above): namely = e, # ez or
e1 # ex = e3. Thefirst case corresponds to an infinite real period oftfenction, and in this
case one obtains the autosoliton solution of the form (31), whetee; = e-. In the second
case thegp-function has the infinite pure imaginary period, so the solution is unbounded for
anyc.

Finally, we should mention the experiments in thin film growth [18] which resulted in
periodic nanostructures formation, often called ‘quantum’ wires and dots. Up to now there has
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only been a few solutions in closed form which could be useful to describe such complicated
phenomena.

The solutions (30) and (31) may provide a reasonable description of the nanostructures
observed.

Acknowledgments

The support of this study by the RFBR grant 98-01-01109 is gratefully acknowledged. We
are grateful to DV V Kozachek for many helpful discussions. The graphs in figures 1 and 2
were calculated in collaboration WiA V Bukhanovsky.

References

1] Murray J D 1989Mathematical BiologyBerlin: Springer)

2] Gurtin M E and MacCamp R C 1977Math. Biosci.33 35-49

3] Newman W | 1980J. Theor. Biol 85 325-34

4] Al-Ghoul M and Ei B C 1996PhysicaD 90119-53

5] Ponce Dawson S, Lawniczak A and Kapral R 199€hem. Physl005211

6] Arrigo D J and Hill 3 M 19955tud. Appl. Math94 21-39

7] Samarsky A A, Galaktionov V A, KurdjumoS P and Mikhaile A P 1987Blow-Up Regimes in Problems for

Quasilinear Parabolic Equation@Moscow: Nauka) (in Russian)
[8] Galaktionar V A 1990 Diff. Int. Eqns3 863-74
[9] Wilhelmsson H 198%hys. Scr39 606-9

[10] KingJ R 1989:. J. Mech. Appl. Math42 537-52

[11] Hill 3 M, Avagliano A J and Edwards M P 199®1A J. Appl. Math.48283-304

[12] Dubrovsky G V and KozachlkeV V 1995 J. Tech. Phys65(4) 124-41 (in Russian)

[13] Bogdanov AV, Dubrovskiy GV, Krutikov M P, KulginoD V and Strelcheng V M 1995Interactions of Gases
with SurfacegBerlin: Springer)

[14] Dubrovskiy V G, Cirlin G E, KozacheV V and Mare& V V 1997 Czech. J. Physl7 389-96

[15] Kreuze H J 1991Phys. RewB 44 1232-9

[16] Brunauer S, Emntd® H and Teller E 1938. Am. Chem. So060 309-19

[17] Fashinger W and Sitter H 1990 Cryst. Growtt99 56671

[18] Cirlin G E et al 1997Surf. Sci377-9895-8

[19] Springer G 195Tntroduction to Riemann Surfacéslassachusetts, PA: Addison-Wesley)

[20] zakharov V E, Manakov S V, NovikoS P and PitaevskL P 1980Theory of Solitons: the Inverse Scattering
Method(Moscow: Nauka) (in Russian)

[21] Krazer A 1903 ehrbuch der Thetafunktionéheipzig: Teubner)

[22] Burnside W 1892Proc. London Math. So@3173-85

[23] Bolza O 188Math. Ann.28447-96 (in German)

[24] Belokolos E D and EnolskiV Z 1988 Nonlinear Equations Integrable in Two-Dimensional Theta-Functions
and Ember Manifold¢Kiev: Preprint 1.88 of IMP AS Ukranian SSR) (in Russian)

[25] Enolski V Z and Salerno M 1998. Phys. A: Math. Gerll7 L425-31

[26] Samsone A M 1998 Phys. LettA 245527-36

[27] Bateman H and Erdelyi A 1958igher Transcendental Functions 1-{Sew-York: McGraw-Hill)

[
[
[
[
[
[
[



